
libdynamic Documentation
Release 1.1.0

Fredrik Widlund

May 20, 2021

Contents

1 Introduction 3

2 Contents 5
2.1 Getting Started . 5
2.2 API Reference . 6
2.3 Changes in libdynamic . 12

3 Indices and Tables 15

Index 17

i

ii

libdynamic Documentation, Release 1.1.0

This is the documentation for libdynamic 1.1.0, last updated May 20, 2021.

Contents 1

https://github.com/fredrikwidlund/libdynamic

libdynamic Documentation, Release 1.1.0

2 Contents

CHAPTER 1

Introduction

libdynamic is a C library for various dynamic container types. Its main features and design principles are:

• High performance/low overhead

• Simplicity

• Uniformity

• Flexibility

Where appropriate, containers are modelled roughly after the stdc++ equivalents.

libdynamic is licensed under the MIT license; see LICENSE in the source distribution for details.

3

https://github.com/fredrikwidlund/libdynamic
https://github.com/fredrikwidlund/libdynamic
http://www.opensource.org/licenses/mit-license.php

libdynamic Documentation, Release 1.1.0

4 Chapter 1. Introduction

CHAPTER 2

Contents

2.1 Getting Started

2.1.1 Compiling and installing libdynamic

The libdynamic source is available at https://github.com/fredrikwidlund/libdynamic/releases/download/v1.1.0/
libdynamic-1.1.0.tar.gz

Unpack the source tarball and change to the source directory:

$ tar xfz libdynamic-1.1.0.tar.gz
$ cd libdynamic-1.1.0

The source uses GNU Autotools (autoconf, automake, libtool), so compiling and installing is extremely simple:

$./configure
$ make
$ make install

To run the test suite which requires cmocka and valgrind, invoke:

$ make check

To change the destination directory (/usr/local by default), use the --prefix=DIR argument to ./
configure. See ./configure --help for the list of all possible configuration options.

The command make check runs the test suite distributed with libdynamic. This step is not strictly necessary, but it
may find possible problems that libdynamic has on your platform. If any problems are found, please report them.

If you obtained the source from a Git repository (or any other source control system), there’s no ./configure script
as it’s not kept in version control. To create the script, the build system needs to be bootstrapped. There are many
ways to do this, but the easiest one is to use the supplied autogen.sh script:

$./autogen.sh

5

https://github.com/fredrikwidlund/libdynamic/releases/download/v1.1.0/libdynamic-1.1.0.tar.gz
https://github.com/fredrikwidlund/libdynamic/releases/download/v1.1.0/libdynamic-1.1.0.tar.gz
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/
http://www.gnu.org/software/libtool/
https://cmocka.org/
http://valgrind.org/

libdynamic Documentation, Release 1.1.0

2.1.2 Building the documentation

(This subsection describes how to build the HTML documentation you are currently reading, so it can be safely
skipped.)

Documentation is in the docs/ subdirectory. It’s written in reStructuredText with Sphinx annotations. To generate
the HTML documentation, invoke:

$ make html

and point your browser to doc/_build/html/index.html. Sphinx 1.0 or newer is required to generate the
documentation.

2.1.3 Compiling programs that use libdynamic

libdynamic headers files are included through one C header file, dynamic.h, so it’s enough to put the line

#include <dynamic.h>

in the beginning of every source file that uses libdynamic.

There’s also just one library to link with, libdynamic. libdynamic is built as a static library and should be compiled
with LTO (link time optimization) to provide the best performance. Compile and link the program as follows:

$ cc -o prog prog.c -flto -fuse-linker-plugin -ldynamic

Use of pkg-config is supported and recommended:

$ cc -o prog prog.c `pkg-config --cflags --libs libdynamic`

2.2 API Reference

2.2.1 Library Version

The libdynamic version uses Semantic Versioning and is of the form A.B.C, where A is the major version, B is the
minor version and C is the patch version.

When a new release only fixes bugs and doesn’t add new features or functionality, the patch version is incremented.
When new features are added in a backwards compatible way, the minor version is incremented and the micro version
is set to zero. When there are backwards incompatible changes, the major version is incremented and others are set to
zero.

The following preprocessor constants specify the current version of the library:

LIBDYNAMIC_VERSION_MAJOR, LIBDYNAMIC_VERSION_MINOR, LIBDYNAMIC_VERSION_PATCH
Integers specifying the major, minor and patch versions, respectively.

LIBDYNAMIC_VERSION A string representation of the current version, e.g. "1.2.1"

2.2.2 Design

6 Chapter 2. Contents

http://docutils.sourceforge.net/rst.html
http://sphinx.pocoo.org/
http://sphinx.pocoo.org/
https://en.wikipedia.org/wiki/Interprocedural_optimization
http://pkg-config.freedesktop.org/
http://semver.org/

libdynamic Documentation, Release 1.1.0

Bounds checking

Since libdynamic is a low-level and high-performance library, bounds checking is left for the user to implement when
and where needed.

Memory allocation

Since gracefully handling memory allocation errors is difficult at best and makes code difficult to optimize libdynamic
will exit on memory allocation errors.

2.2.3 Buffer

A buffer object represents raw memory that is dynamically increased when data is inserted. The amount of memory
actually allocated will grow exponentially to allow for amortized constant time appends.

buffer
This data structure represents the buffer object.

void buffer_construct(buffer *buffer)
Constructs an empty buffer.

void buffer_destruct(buffer *buffer)
Releases all resources used by the buffer.

size_t buffer_size(buffer *buffer)
Returns the size of the memory contained in the buffer.

size_t buffer_capacity(buffer *buffer)
Returns the amount of memory allocated for the buffer.

void buffer_reserve(buffer *buffer, size_t size)
Ensure that the buffer capacity is at least size bytes large.

void buffer_resize(buffer *buffer, size_t size)
Set the buffer size of buffer to be size. If the buffer is enlarged the added buffer data is undefined.

void buffer_compact(buffer *buffer)
Reduces the amount of allocated memory in the buffer to match the current buffer size.

void buffer_insert(buffer *buffer, size_t position, void *data, size_t size)
Inserts data with a given size into the given position of the buffer

void buffer_insert_fill(buffer *buffer, size_t postion, size_t count, void *data, size_t size)
Inserts count copies of data with a given size into the given position of the buffer

void buffer_erase(buffer *buffer, size_t position, size_t size)
Removes size bytes from the data in the buffer at the given position.

void buffer_clear(buffer *buffer)
Clears the buffer of all content.

void *buffer_data(buffer *buffer)
Returns a pointer the the content of the buffer.

2.2.4 List

Lists are sequence containers that allow constant time insert and erase operations anywhere within the sequence, and
iteration in both directions.

2.2. API Reference 7

libdynamic Documentation, Release 1.1.0

List containers are implemented as doubly-linked lists; Doubly linked lists can store each of the elements they contain
in different and unrelated storage locations. The ordering is kept internally by the association to each element of a link
to the element preceding it and a link to the element following it.

Lists are modelled roughtly after the C++ list counterpart.

list
This data structure represents the list object.

void list_release_callback(void *)
This type defines a function reference to a user defined callback that release resources associated with an object

int list_compare_callback(void *first, void *second)
This type defines a function reference to a user defined callback that compares the first and the second object,
and returns a negative value if first is smaller, a positive value if first is larger, and 0 if they are the same.

void list_construct(list *list)
Constructs an empty list.

void list_destruct(list *list, list_release_callback *release)
Releases all resources used by the list. If object has resources that needs to be released the release callback
optionally can be defined.

void *list_next(void *object)
Returns a pointer to the next object after object.

void *list_previous(void *object)
Returns a pointer to the previous object before object.

int list_empty(list *list)
Returns 1 if the list is empty.

void *list_front(list *list)
Returns a pointer to the first object in list.

void *list_back(list *list)
Returns a pointer to the last object in list.

void *list_end(list *list)
Returns a pointer to the watch dog object at the end of the list.

void *list_push_front(list *list, void *object, size_t size)
Copies the contents of object of size size to the front of the list.

void *list_push_back(list *list, void *object, size_t size)
Copies the contents of object of size size to the back of the list.

void list_insert(void *list_object, void *object, size_t size)
Copies the contents of object of size size before list_object.

void list_erase(void *object, list_release_callback *release)
Deletes object from the list. If the object has resources that needs to be released the release callback optionally
can be defined.

void list_clear(list *list, list_release_callback *release)
Deletes all objects from list. If the objects has resources that needs to be released the release callback optionally
can be defined.

void *list_find(list *list, list_compare_callback *compare, void *object)
Finds an object in list where the contents are the same as for object. The callback function compare needs to be
defined accordingly.

8 Chapter 2. Contents

http://www.cplusplus.com/reference/list/list/

libdynamic Documentation, Release 1.1.0

2.2.5 Vector

Vectors are sequence containers representing arrays that can change in size. Vectors are modelled roughtly after the
C++ vector counterpart.

Just like arrays, vectors use contiguous storage locations for their elements, which means that their elements can also
be accessed using offsets on regular pointers to its elements, and just as efficiently as in arrays. But unlike arrays, their
size can change dynamically, with their storage being handled automatically by the container.

Internally, vectors use a dynamically allocated array to store their elements. This array may need to be reallocated in
order to grow in size when new elements are inserted, which implies allocating a new array and moving all elements
to it. This is a relatively expensive task in terms of processing time, and thus, vectors do not reallocate each time an
element is added to the container.

Instead, vector containers may allocate some extra storage to accommodate for possible growth, and thus the container
may have an actual capacity greater than the storage strictly needed to contain its elements (i.e., its size). Reallocations
only happen at logarithmically growing intervals of size so that the insertion of individual elements at the end of the
vector can be provided with amortized constant time complexity.

Therefore, compared to arrays, vectors consume more memory in exchange for the ability to manage storage and grow
dynamically in an efficient way.

vector
This data structure represents the vector object.

void vector_release_callback(void *)
This type defines a function reference to a user defined callback that release resources associated with an object

void vector_construct(vector *vector, size_t size)
Constructs an empty vector for elements of the given size.

void vector_destruct(vector *vector, vector_release_callback *release)
Releases all resources used by the vector, optionally calling release to release resources associated with each
object.

size_t vector_size(vector *vector)
Returns the size of the memory contained in the vector.

size_t vector_capacity(vector *vector)
Returns the amount of memory allocated for the vector.

int vector_empty(vector *vector)
Returns 1 if the vector contains no elements.

void vector_reserve(vector *vector, size_t size)
Ensure that the vector capacity is at least size elements.

void vector_shrink_to_fit(vector *vector)
Reduces the amount of allocated memory in the vector to match the current vector size.

void *vector_at(vector *vector, size_t position)
Returns a pointer to the element in the given position in the vector.

void *vector_front(vector *vector)
Returns a pointer to the first element in the vector.

void *vector_back(vector *vector)
Returns a pointer to the last element in the vector.

void *vector_data(vector *vector)
Returns a direct pointer to the memory array used internally by the vector to store its owned elements.

2.2. API Reference 9

http://www.cplusplus.com/reference/vector/vector/

libdynamic Documentation, Release 1.1.0

Because elements in the vector are guaranteed to be stored in contiguous storage locations in the same order as
represented by the vector, the pointer retrieved can be offset to access any element in the array.

void vector_insert(vector *vector, size_t position, void *object)
Inserts the object into the vector at the given position.

void vector_insert_range(vector *vector, size_t position, void *first, void *last)
Inserts a range of sequential objects, specified by giving the first and last object, into the vector at the given
position.

void vector_insert_fill(vector *vector, size_t position, size_t count, void *object)
Inserts count copies of the object into the vector at the given position.

vector_erase(vector *vector, size_t position, vector_release_callback *release)
Removes the element in the given position in the vector, optionally calling release to release resources associated
with the object.

vector_erase_range(vector *vector, size_t first, size_t last, vector_release_callback *release)
Removes the elements from the vector starting at the given first position and ending before the last position,
optionally calling release to release resources associated with each object.

The element at the last position is not removed.

void vector_push_back(vector *vector, void *object)
Appends the object to the end of the vector.

void vector_pop_back(vector *vector)
Removes the last element of the vector.

void vector_clear(vector *vector, vector_release_callback *release)
Clears the vector of all elements, optionally calling release to release resources associated with each object.

2.2.6 String

Strings are objects that represent sequences of characters. String objects are modelled roughly after the C++ string
counterpart.

string
This data structure represents the string object.

void string_construct(string *string)
Constructs an empty string.

void string_destruct(string *string)
Releases all resources used by the string.

size_t string_length(string *string)
Returns the length of the string.

size_t string_capacity(string *string)
Returns the amount of memory allocated for the string.

int string_empty(string *string)
Returns 1 if the string is empty.

void string_reserve(string *string, size_t size)
Ensures that the allocated memory for the string is at least size bytes.

void string_shrink_to_fit(string *string)
Reduces the amount of allocated memory in the string to match the current string length.

10 Chapter 2. Contents

http://www.cplusplus.com/reference/string/string/

libdynamic Documentation, Release 1.1.0

void string_insert(string *string, size_t position, char *characters)
Insert null-terminated characters into the string at the given position.

void string_insert_buffer(string *string, size_t position, char *data, size_t size)
Insert data of the given size into the string at the given position.

void string_prepend(string *string, char *characters)
Prepend null-terminated characters onto the string.

void string_append(string *string, char *characters)
Append null-terminated characters onto the string.

void string_erase(string *string, size_t position, size_t size)
Remove size number of characters from the string at the given position.

void string_replace(string *string, size_t position, size_t size, char *characters)
Replace the portion of the string that begins at position and spans size positions with null-terminated characters.

void string_replace_all(string *string, char *find, char *sub)
Replace all occurances of find with sub.

void string_clear(string *string)
Empty the string.

char *string_data(string *string)
Return null-terminated characters corresponding to the content of string.

ssize_t string_find(string *string, char *find, size_t position)
Find the first position of find in the string starting at the given position.

If no position can be found the function will return -1.

int string_compare(string *one, string *two)
Returns 1 if string one and string two contain the same characters.

void string_split(string *string, char *delimiters, vector *vector)
Splits the string at any character specified in delimiters into a vector of strings. Empty parts are not included in
the result. vector should point at allocated but uninitialized memory before being supplied to the function.

2.2.7 Map

Maps are associative containers that store elements formed by the combination of a key value and a mapped value,
and which allows for fast retrieval of individual elements based on their keys. Map objects are modelled roughly after
the C++ unordered_map counterpart.

For performance reasons some support callbacks need to be included in various calls rather than as map properties.

size_t map_hash_callback(void *element)
The map_hash_callback function should return a hash value of the key of the element.

int map_equal_callback(void *element1, void *element2)
The map_equal_callback function is called with a pointer to two elements, element1 and element2, and should
return 1 if the elements are equal.

void map_set_callback(void *destination, void *source)
The map_set_callback function is called with a pointer to a source element from where the element data is read,
and a destination element where the data is written.

void map_release_callback(void *element)
The map_release_callback function is called with a pointer a map element when it is removed from the map.

2.2. API Reference 11

http://http://www.cplusplus.com/reference/unordered_map/unordered_map/

libdynamic Documentation, Release 1.1.0

map
This data structure represents the map object.

void map_construct(map *map, size_t element_size, void *element_empty, int (*set)(void *, void *))
Constructs an empty map, where each element containing the key and value is of the size element_size, and
element_empty corresponds to an empty element.

void map_destruct(map *map, int (*equal)(void *, void *), void (*release)(void *))
Releases all resources used by the map. The release callback can be NULL, and if so equal is not required.

size_t map_size(map *map)
Returns the number of elements in the map.

void map_reserve(map *map, size_t size, size_t (*hash)(void *), int (*equal)(void *, void *), int (*set)(void
*, void *))

Reserves space in the map for size number of elements.

void *map_element_empty(map *map)
Returns the defined empty element of the map.

void *map_at(map *map, void *element, size_t (*hash)(void *), int (*equal)(void *, void *))
Returns a pointer to the element in the map that has a key that corrensponds to the key in element. If the key is
not found a pointer to an empty element is returned.

void map_insert(map *map, void *element, size_t (*hash)(void *), int (*equal)(void *, void *), int
(*set)(void *, void *), void (*release)(void *))

Insert an element into the map. If the key of the element already exists in the map the element will be released.

void map_erase(map *map, void *element, size_t (*hash)(void *), int (*equal)(void *, void *), int (*set)(void
*, void *), void (*release)(void *))

Removes an element from the map.

void map_clear(map *map, int (*equal)(void *, void *), int (*)(void *set, void *), void (*release)(void *))
Clears the map of all the elements.

2.2.8 Hash

A few hash function are included in libdynamic.

uint64_t hash_data(void *data, size_t size)
Returns a 64-bit hash of size bytes of memory pointed to by data. The library uses a C port of Google Farmhash.

uint64_t hash_string(char *string)
Returns a 64-bit hash of the null-terminated string.

2.3 Changes in libdynamic

2.3.1 Version 1.0

Released 2017-01-03

• Initial release

2.3.2 Version 1.1

Released 2017-12-17

12 Chapter 2. Contents

https://github.com/fredrikwidlund/cfarmhash
https://github.com/google/farmhash

libdynamic Documentation, Release 1.1.0

• New features:

– List type

– More uniform interfaces

2.3.3 Version 1.2

Released 2019-04-19

• New features:

– Add maps (string map) and mapi (uint64_t) abstractions

– Refactor map interface

2.3.4 Version 1.3

Released 2019-09-02

• New features:

– Add list splicing

2.3.5 Version 2.0

Released 2020-05-17

• New features:

– Add event handling

– Add worker pools

2.3.6 Version 2.2

Released 2020-12-25

• New features:

– Add counters

– Add abort

2.3.7 Version 2.3

Released 2021-01-02

• New features:

– Pool refactoring

2.3. Changes in libdynamic 13

libdynamic Documentation, Release 1.1.0

14 Chapter 2. Contents

CHAPTER 3

Indices and Tables

• genindex

• search

15

libdynamic Documentation, Release 1.1.0

16 Chapter 3. Indices and Tables

Index

B
buffer (C type), 7
buffer_capacity (C function), 7
buffer_clear (C function), 7
buffer_compact (C function), 7
buffer_construct (C function), 7
buffer_data (C function), 7
buffer_destruct (C function), 7
buffer_erase (C function), 7
buffer_insert (C function), 7
buffer_insert_fill (C function), 7
buffer_reserve (C function), 7
buffer_resize (C function), 7
buffer_size (C function), 7

H
hash_data (C function), 12
hash_string (C function), 12

L
list (C type), 8
list_back (C function), 8
list_clear (C function), 8
list_compare_callback (C type), 8
list_construct (C function), 8
list_destruct (C function), 8
list_empty (C function), 8
list_end (C function), 8
list_erase (C function), 8
list_find (C function), 8
list_front (C function), 8
list_insert (C function), 8
list_next (C function), 8
list_previous (C function), 8
list_push_back (C function), 8
list_push_front (C function), 8
list_release_callback (C type), 8

M
map (C type), 11

map_at (C function), 12
map_clear (C function), 12
map_construct (C function), 12
map_destruct (C function), 12
map_element_empty (C function), 12
map_equal_callback (C type), 11
map_erase (C function), 12
map_hash_callback (C type), 11
map_insert (C function), 12
map_release_callback (C type), 11
map_reserve (C function), 12
map_set_callback (C type), 11
map_size (C function), 12

S
string (C type), 10
string_append (C function), 11
string_capacity (C function), 10
string_clear (C function), 11
string_compare (C function), 11
string_construct (C function), 10
string_data (C function), 11
string_destruct (C function), 10
string_empty (C function), 10
string_erase (C function), 11
string_find (C function), 11
string_insert (C function), 10
string_insert_buffer (C function), 11
string_length (C function), 10
string_prepend (C function), 11
string_replace (C function), 11
string_replace_all (C function), 11
string_reserve (C function), 10
string_shrink_to_fit (C function), 10
string_split (C function), 11

V
vector (C type), 9
vector_at (C function), 9

17

libdynamic Documentation, Release 1.1.0

vector_back (C function), 9
vector_capacity (C function), 9
vector_clear (C function), 10
vector_construct (C function), 9
vector_data (C function), 9
vector_destruct (C function), 9
vector_empty (C function), 9
vector_erase (C function), 10
vector_erase_range (C function), 10
vector_front (C function), 9
vector_insert (C function), 10
vector_insert_fill (C function), 10
vector_insert_range (C function), 10
vector_pop_back (C function), 10
vector_push_back (C function), 10
vector_release_callback (C type), 9
vector_reserve (C function), 9
vector_shrink_to_fit (C function), 9
vector_size (C function), 9

18 Index

	Introduction
	Contents
	Getting Started
	API Reference
	Changes in libdynamic

	Indices and Tables
	Index

